8,210 research outputs found

    Non-Uniform Time Sampling for Multiple-Frequency Harmonic Balance Computations

    Get PDF
    A time-domain harmonic balance method for the analysis of almost-periodic (multi-harmonics) flows is presented. This method relies on Fourier analysis to derive an efficient alternative to classical time marching schemes for such flows. It has recently received significant attention, especially in the turbomachinery field where the flow spectrum is essentially a combination of the blade passing frequencies. Up to now, harmonic balance methods have used a uniform time sampling of the period of interest, but in the case of several frequencies, non-necessarily multiple of each other, harmonic balance methods can face stability issues due to a bad condition number of the Fourier operator. Two algorithms are derived to find a non-uniform time sampling in order to minimize this condition number. Their behavior is studied on a wide range of frequencies, and a model problem of a 1D flow with pulsating outlet pressure, which enables to prove their efficiency. Finally, the flow in a multi-stage axial compressor is analyzed with different frequency sets. It demonstrates the stability and robustness of the present non-uniform harmonic balance method regardless of the frequency set

    Properties of selected mutations and genotypic landscapes under Fisher's Geometric Model

    Full text link
    The fitness landscape - the mapping between genotypes and fitness - determines properties of the process of adaptation. Several small genetic fitness landscapes have recently been built by selecting a handful of beneficial mutations and measuring fitness of all combinations of these mutations. Here we generate several testable predictions for the properties of these landscapes under Fisher's geometric model of adaptation (FGMA). When far from the fitness optimum, we analytically compute the fitness effect of beneficial mutations and their epistatic interactions. We show that epistasis may be negative or positive on average depending on the distance of the ancestral genotype to the optimum and whether mutations were independently selected or co-selected in an adaptive walk. Using simulations, we show that genetic landscapes built from FGMA are very close to an additive landscape when the ancestral strain is far from the optimum. However, when close to the optimum, a large diversity of landscape with substantial ruggedness and sign epistasis emerged. Strikingly, landscapes built from different realizations of stochastic adaptive walks in the same exact conditions were highly variable, suggesting that several realizations of small genetic landscapes are needed to gain information about the underlying architecture of the global adaptive landscape.Comment: 51 pages, 8 figure

    Rheopexy and tunable yield stress of carbon black suspensions

    Get PDF
    We show that besides simple or thixotropic yield stress fluids there exists a third class of yield stress fluids. This is illustrated through the rheological behavior of a carbon black suspension, which is shown to exhibit a viscosity bifurcation effect around a critical stress along with rheopectic trends, i.e., after a preshear at a given stress the fluid tends to accelerate when it is submitted to a lower stress. Viscosity bifurcation displays here original features: the yield stress and the critical shear rate depend on the previous flow history. The most spectacular property due to these specificities is that the material structure can be adjusted at will through an appropriate flow history. In particular it is possible to tune the material yield stress to arbitrary low values. A simple model assuming that the stress is the sum of one component due to structure deformation and one component due to hydrodynamic interactions predicts all rheological trends observed and appears to well represent quantitatively the data.Comment: submitted to Soft Matte

    Bifurcations of a large scale circulation in a quasi-bidimensional turbulent flow

    Full text link
    We report the experimental study of the bifurcations of a large-scale circulation that is formed over a turbulent flow generated by a spatially periodic forcing. After shortly describing how the flow becomes turbulent through a sequence of symmetry breaking bifurcations, we focus our study on the transitions that occur within the turbulent regime. They are related to changes in the shape of the probability density function (PDF) of the amplitude of the large scale flow. We discuss the nature of these bifurcations and how to model the shape of the PDF.Comment: 6 pages, 9 figure

    Phase diagram of hard-core bosons on clean and disordered 2-leg ladders: Mott insulator - Luttinger liquid - Bose glass

    Full text link
    One dimensional free-fermions and hard-core bosons are often considered to be equivalent. Indeed, when restricted to nearest-neighbor hopping on a chain the particles cannot exchange themselves, and therefore hardly experience their own statistics. Apart from the off-diagonal correlations which depends on the so-called Jordan-Wigner string, real-space observables are similar for free-fermions and hard-core bosons on a chain. Interestingly, by coupling only two chains, thus forming a two-leg ladder, particle exchange becomes allowed, and leads to a totally different physics between free-fermions and hard-core bosons. Using a combination of analytical (strong coupling, field theory, renormalization group) and numerical (quantum Monte Carlo, density-matrix renormalization group) approaches, we study the apparently simple but non-trivial model of hard-core bosons hopping in a two-leg ladder geometry. At half-filling, while a band insulator appears for fermions at large interchain hopping tperp >2t only, a Mott gap opens up for bosons as soon as tperp\neq0 through a Kosterlitz-Thouless transition. Away from half-filling, the situation is even more interesting since a gapless Luttinger liquid mode emerges in the symmetric sector with a non-trivial filling-dependent Luttinger parameter 1/2\leq Ks \leq 1. Consequences for experiments in cold atoms, spin ladders in a magnetic field, as well as disorder effects are discussed. In particular, a quantum phase transition is expected at finite disorder strength between a 1D superfluid and an insulating Bose glass phase.Comment: 24 pages, 23 figure

    Shear induced drainage in foamy yield-stress fluids

    Get PDF
    Shear induced drainage of a foamy yield stress fluid is investigated using MRI techniques. Whereas the yield stress of the interstitial fluid stabilizes the system at rest, a fast drainage is observed when a horizontal shear is imposed. It is shown that the sheared interstitial material behaves as a viscous fluid in the direction of gravity, the effective viscosity of which is controlled by shear in transient foam films between bubbles. Results provided for several bubble sizes are not captured by the R^2 scaling classically observed for liquid flow in particulate systems, such as foams and thus constitute a remarkable demonstration of the strong coupling of drainage flow and shear induced interstitial flow. Furthermore, foam films are found to be responsible for the unexpected arrest of drainage, thus trapping irreversibly a significant amount of interstitial liquid.Comment: Published in Physical Review Letters. http://prl.aps.org/abstract/PRL/v104/i12/e12830
    • 

    corecore